
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

435

SIMULATIONS OF CONTINUOUS RANDOM VARIABLES

AND MONTE CARLO METHODS

Sanda Micula 1*

Ioana D. Pop 2

ABSTRACT

In this paper we describe algorithms for computer simulations of some common

continuous distributions and their implementation in MATLAB. We use Monte Carlo

methods for estimating probabilities and other characteristics of random variables. The

paper concludes with some interesting applications.

AMS SUBJECT CLASSIFICATION: 60E05, 60G99, 60J10, 65C05, 65C60.

KEYWORDS: continuous random variables, computer simulations, Monte Carlo

methods, MATLAB.

1. INTRODUCTION

Monte Carlo methods are used to describe any technique that approximates solutions to

quantitative problems through statistical sampling. This process involves performing

many simulations using random numbers and probability to get an approximation of the

answer to a problem which is otherwise too complicated, expensive, time consuming,

dangerous, or simply impossible to solve analytically. Such methods use approximations

which are based on “long run” simulations. With the help of random number generators,

computers can actually simulate a “long run”. The longer the run is simulated, the more

accurate the predictions are. Monte Carlo methods can be used for (but are not restricted

to) computation of probabilities, expected values and other distribution characteristics.

Although we briefly discuss simulations of some discrete distributions, the main focus of

this paper is to present methods of simulation for continuous random variables and their

applications.

1.1. Preliminaries

Definition 1.1. The set of all possible outcomes of an experiment is called the sample

space of that experiment and is denoted by S. Its elements are called elementary events.

An event is a collection of elementary events, i.e. a subset of S.

Definition 1.2. A collection of events 𝐾 ⊆ 𝑆 is called a 𝜎-field (or 𝜎-algebra) on the

sample space 𝑆, if it satisfies the conditions

1* corresponding author, Lecturer PhD., Department of Mathematics and Computer Science, Babeş-Bolyai

University, Cluj-Napoca, Romania, smicula@math.ubbcluj.ro
2 Professor PhD., Department of Land Measurements and Exact Sciences, University of Agricultural Sciences

and Veterinary Medicine, Cluj-Napoca, Romania, popioana@usamvcluj.ro

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

436

(𝑖) 𝐾 ≠ ∅;

(𝑖𝑖) 𝐴 ∈ 𝐾 ⟹ 𝐴̅ ∈ 𝐾;

(𝑖𝑖𝑖) 𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝐾 ⟹ ⋃ 𝐴𝑖 ∈ 𝐾.
𝑛

𝑖=1

Definition 1.3. Let S be a sample space and 𝐾 ⊆ 𝑆 a 𝜎-field on it. Probability is a

function 𝑃: 𝐾 → 𝑅 satisfying the conditions

(𝑖) 𝑃(𝑆) = 1;

(𝑖𝑖) 𝑃(𝐴) ≥ 0, ∀𝐴 ∈ 𝐾;

(𝑖𝑖𝑖) 𝑃(𝐴1⋃𝐴2⋃ …) = 𝑃(𝐴1) + 𝑃(𝐴2) + ⋯ for any finite or countably infinite

collection of mutually exclusive (disjoint) events in 𝐾.

Then (𝑆, 𝐾, 𝑃) is called a probability space.

Definition 1.4. A random variable is a function 𝑋: 𝑆 → ℝ for which the inverse image

𝑋−1((−∞, 𝑥]) = {𝑒 ∈ 𝑆|𝑋(𝑒) ≤ 𝑥} ∈ 𝐾, for all 𝑥 ∈ ℝ.

If 𝑋(𝑆) is a most countable in ℝ, then 𝑋 is a discrete random variable.

Definition 1.5. Let 𝑋 be a (discrete or continuous) random variable. The function 𝐹: ℝ →
ℝ given by

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) (1.1)

is called the cumulative distribution function (cdf) of 𝑋.

Definition 1.6. Let 𝑋 be a random variable with 𝐹 . If there exists a function 𝑓: ℝ → ℝ

such that

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡,
𝑥

−∞
 (1.2)

then 𝑋 is a continuous random variable and 𝑓 is called its probability density function

(pdf).

If 𝑋 is a discrete random variable, then a better way of describing it is to give its

probability distribution function (also pdf), an array that contains all its values 𝑥𝑖, and

the corresponding probabilities with which each value is taken 𝑝𝑖 = 𝑃(𝑋 = 𝑥𝑖),

𝑋 (
𝑥𝑖

𝑝𝑖
)

𝑖∈𝐼
 . (1.3)

So, either way (the discrete or the continuous case), the pdf is what describes a random

variable. Although in both cases we call it generically a pdf, the word distribution

emphasizes a discrete behavior, whereas density suggests a continuous set. However, not

all authors make the distinction between the two cases. In the case where 𝑋 is a discrete

random variable, it can be easily seen that

 𝐹(𝑥) = ∑ 𝑝𝑖𝑥𝑖≤𝑥 , (1.4)

hence the name.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

437

1.2. Some Common Distributions

Although many more probability distributions have a wide variety of applications and the

simulation methods we will discuss apply to all of them, we do not intend to make an

exhaustive list of common distributions and, thus, only mention the ones that will be used

in applications in the sequence.

Bernoulli distribution 𝐵𝑒𝑟𝑛(𝑝), with parameter 𝑝 ∈ (0,1). This is the simplest of

distributions, with pdf

𝑋 (
0 1

1 − 𝑝 𝑝
) . (1.5)

It is used to model “success/failure” (i.e. a Bernoulli trial), since many distributions are

described in such terms.

Binomial distribution 𝐵(𝑛, 𝑝), with parameters 𝑛 ∈ ℕ, 𝑝 ∈ (0, 1). Consider a series of 𝑛

Bernoulli trials with probability of success 𝑝 in every trial (𝑞 = 1 − 𝑝). Let 𝑋 be the

number of successes that occur in the 𝑛 trials. Then 𝑋 has a Binomial distribution, with

pdf

 𝑋 (
𝑘

𝐶𝑛
𝑘𝑝𝑘𝑞𝑛−𝑘)

𝑘=0,𝑛̅̅̅̅̅
 . (1.6)

Note that a Binomial 𝐵(𝑛, 𝑝) variable is the sum of n independent 𝐵𝑒𝑟𝑛(𝑝) variables and

𝐵𝑒𝑟𝑛(𝑝) = 𝐵(1, 𝑝).

Poisson distribution 𝑃(𝜆), with parameter 𝜆 > 0, with pdf

𝑋 (
𝑘

𝜆𝑘

𝑘!
𝑒−𝜆)

𝑘∈ℕ

 . (1.7)

Such a variable is defined in the context of a Poisson process: a process in which discrete

events are observed in a continuous medium (length, aria, volume, time, etc.). Such events

are called rare events, because they are extremely unlikely to occur simultaneously or

within a short interval (of time, length, etc.). The Poisson variable 𝑋 denotes the number

of such rare events that occur in a given interval of the continuous medium. The

parameter of the Poisson distribution, 𝜆, represents the average number of the considered

rare events per unit (of time, length, etc.). This distribution is used to model number of

jobs in an interval of time, such as arrival of messages, earthquakes that happen in an

area, errors found in software, traffic accidents, etc.

Next, let us recall some important continuous random variables. For their pdf’s, we only

mention their expression on the region where they are non-zero (meaning they are equal

to 0 everywhere else).

Uniform distribution 𝒰(𝑎, 𝑏), with parameters 𝑎 < 𝑏 ∈ ℝ, has pdf

 𝑓(𝑥) =
1

𝑏−𝑎
, 𝑥 ∈ (𝑎, 𝑏) . (1.8)

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

438

It is used whenever a value is picked “at random” from an interval, in situations when all

values from an interval are equally probable to be taken by a random variable.

Standard Uniform distribution 𝒰(0,1), with pdf

𝑓(𝑥) = 1, 𝑥 ∈ (0,1) 𝑎𝑛𝑑 𝐹(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ∈ [0,1) .
1, 𝑥 > 1

 (1.9)

Standard Uniform variables are particularly important in generating random variables

with various distributions. If 𝑈 ∈ 𝒰(0,1), then 𝑋 = 𝑎 + (𝑏 − 𝑎)𝑈 ∈ 𝒰 (𝑎, 𝑏).

Normal distribution 𝑁(𝜇, 𝜎), with parameters 𝜇 ∈ ℝ, 𝜎 > 0, with pdf and cdf

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 , 𝑥 ∈ ℝ, 𝐹(𝑥) =
1

𝜎√2𝜋
∫ 𝑒

−
(𝑡−𝜇)2

2𝜎2 𝑑𝑡 = Φ (
𝑥−𝜇

𝜎
)

𝑥

−∞
. (1.10)

Standard (Reduced) Normal distribution 𝑁(0,1), with pdf

𝑓(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2 , 𝑥 ∈ ℝ and 𝑐𝑑𝑓 𝐹(𝑥) =
1

√2𝜋
∫ 𝑒−

𝑡2

2 𝑑𝑡 = Φ(𝑥)
𝑥

−∞
, (1.11)

known as Laplace’s function (or the error function), whose values can be found in tables.

Exponential distribution 𝐸𝑥𝑝(𝜆), with parameter 𝜆 > 0, has pdf

 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥, 𝑥 > 0 and 𝑐𝑑𝑓 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥, 𝑥 > 0. (1.12)

An Exponential variable models time: waiting time, interarrival time, failure time, time

between rare events, etc. The parameter 𝜆 represents the frequency of rare events,

measured in time-1. In fact, in a sequence of rare events, where the number of such

occurrences in an interval of time of length 𝑡 has 𝑃(𝜆𝑡) distribution, the time between rare

events has 𝐸𝑥𝑝(𝜆) distribution.

Expectation and variance

These are two of the most important numerical characteristics associated with random

variables. The expectation (expected value, mean value) gives a “long term” average

value, an equilibrium value of a random variable. Below are the computational formulas

for a discrete random variable with pdf 𝑋 (
𝑥𝑖

𝑝𝑖
)

𝑖∈𝐼
 and for a continuous random variable

with pdf 𝑓: 𝑅 → 𝑅, respectively:

𝐸(𝑋) = ∑ 𝑥𝑖𝑝𝑖, 𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)𝑑𝑥

ℝ𝑖∈𝐼 ′ (1.13)

The variance (dispersion) measures the spread in data, how much the values of a random

variable vary from its mean value and so does its square root, the standard deviation.

𝑉(𝑋) = 𝐸 ((𝑋 − 𝐸(𝑋))
2

) = 𝐸(𝑋2) − (𝐸(𝑋))
2

, 𝜎(𝑋) = √𝑉(𝑋) . (1.14)

Normal approximation of a Binomial distribution

For values of 𝑝 that are not too extreme, say 𝑝 ∈ [0.05, 0.95] and for large values of 𝑛 ∈
𝑁, the Normal distribution can be used to approximate the Binomial distribution:

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

439

𝐵(𝑛, 𝑝) ≈ 𝑁 (𝜇 = 𝑛𝑝, 𝜎 = √𝑛𝑝(1 − 𝑝)) . (1.15)

This formula is especially useful in Statistics, when quantiles (inverses of the cdf) are

needed.

Next, we recall one important case of two-dimensional random vectors, which will be

used further on.

Uniformly distributed random vector (X,Y) over a region 𝐷 ⊆ ℝ2, is vector whose

joint density is a constant over that region (and 0 everywhere else). Since the total

(double) integral of that density ∫ ∫ 𝑓(𝑥; 𝑦) 𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
 must be 1 (representing the

probability of the sure event), the joint pdf of the vector is given by

𝑓(𝑥, 𝑦) =
1

area(𝐷)
, (𝑥, 𝑦) ∈ 𝐷 . (1.16)

From the joint pdf of a vector, 𝑓(𝑋;𝑌), one can find the marginal densities (the pdf’s of its

components) by

𝑓𝑋(𝑥) = ∫ 𝑓(𝑋,𝑌)(𝑥, 𝑦)𝑑𝑦,
ℝ

𝑓𝑌(𝑦) = ∫ 𝑓(𝑋,𝑌)(𝑥, 𝑦)𝑑𝑥.
ℝ

 (1.17)

2. SIMULATIONS OF RANDOM VARIABLES AND MONTE CARLO METHODS

2.1. Inverse Transform Method

This is a method used when we want to generate a random variable whose cdf 𝐹 does not

have a very complicated form. It is based on the following result:

Theorem 2.1. Let X be a continuous random variable with 𝑐𝑑𝑓 𝐹 ∶ ℝ → ℝ. Then 𝑈 =
 𝐹(𝑋) ∈ 𝒰(0,1).

Proof. We will show that 𝑈 has the 𝒰(0,1) pdf.

First off, let us notice that, being a cdf, 𝐹(𝑥) ∈ [0,1], for all 𝑥 ∈ ℝ and, thus, all the

values of 𝑈 are in [0,1].

Secondly, 𝑋 being a continuous random variable, there exists an interval (𝑎, 𝑏) ⊆ ℝ such

that 𝐹: (𝑎, 𝑏) → [0,1] is strictly increasing (therefore one-to-one), 𝐹(𝑥) = 0, ∀𝑥 ≤ 𝑎 and

𝐹(𝑥) = 1, ∀𝑥 ≥ 𝑏.

Hence, its inverse 𝐹−1: [0,1] → (𝑎, 𝑏) exists.

Now, let us consider the 𝑐𝑑𝑓, 𝐹𝑈. Let 𝑥 ∈ ℝ.

If 𝑥 < 0, then 𝐹𝑈(𝑥) = 𝑃(𝑈 ≤ 𝑥) = 𝑃(imposs. event) = 0. Hence, 𝑓𝑈(𝑥) = 𝐹𝑈
′ (𝑥) = 0.

If 𝑥 > 1, then 𝐹𝑈(𝑥) = 𝑃(𝑈 ≤ 𝑥) = 𝑃(sure event) = 1 and thus, 𝑓𝑈(𝑥) = 𝐹𝑈
′ (𝑥) = 0.

For 𝑥 ∈ [0,1], we have

𝐹𝑈(𝑥) = 𝑃(𝑈 ≤ 𝑥) = 𝑃(𝐹(𝑋) ≤ 𝑥) = 𝑃(𝑋 ≤ 𝐹−1(𝑥)) = 𝐹(𝐹−1(𝑥)) = 𝑥.

Then 𝑓𝑈(𝑥) = 𝐹𝑈
′ (𝑥) = 1 and 𝑈 ∈ 𝒰(0,1).□

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

440

As a consequence, to generate a continuous random variable with given 𝑐𝑑𝑓 𝐹, we

generate a variable 𝑈 ∈ 𝒰(0,1) and let

𝑋 = 𝐹−1(𝑈). (2.1)

Indeed, then the cdf of 𝑋 is

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝐹−1(𝑈) ≤ 𝑥) = 𝑃(𝑈 ≤ 𝐹(𝑥)) = 𝐹𝑈(𝐹(𝑥)) = 𝐹(𝑥).

For all 𝑥 ∈ ℝ, the last assertion following from (1.9) and the fact that 𝐹(𝑥) ∈ [0,1]. Thus

𝑋 has the desired cdf 𝐹.

Remark 2.2. The inverse transform method can be adjusted for discrete random

variables as well, if we consider the generalized inverse of the cdf, i.e. let

𝑋 = min{𝑥 | 𝐹(𝑥) ≥ 𝑈}. (2.2)

Algorithm 1.

1. Generate ∈ 𝒰(0,1) .

2. if 𝑋 is continuous, then let 𝑋 = 𝐹−1(𝑈).

3. if 𝑋 is discrete, then let 𝑋 = min{𝑥 ∈ 𝑆 | 𝐹(𝑥) ≥ 𝑈}, where 𝑆 is a set of possible

values of 𝑋.

Example 2.3. Use the inverse transform method to generate a variable X ∈ 𝐸𝑥𝑝(𝜆), 𝜆 > 0.

By (1.12), we find the inverse 𝐹−1(𝑥) = −
1

𝜆
ln (1 − 𝑥). Then, for 𝑈 ∈ 𝒰(0,1) we

generate

𝑋1 = −
1

𝜆
ln (1 − 𝑈) . (2.3)

Now, since 𝑈 ∈ 𝒰(0,1) ⇔ 1 − 𝑈 ∈ 𝒰(0,1) we can also use

𝑋2 = −
1

𝜆
ln (𝑈) . (2.4)

Notice that since 𝑈, 1 − 𝑈 ∈ 𝒰(0,1), we have that both ln(𝑈) , ln(1 − 𝑈) < 0 and, thus,

𝑋1, 𝑋2 > 0, as they should be.□

2.2. Rejection Method

The previous method is inconvenient when the cdf F has a complicated expression and/or

its inverse is difficult to find. We present next a method that uses the pdf f instead.

Theorem 2.4. Let 𝑓: ℝ → ℝ be a pdf. Let the vector (𝑋, 𝑌) be Uniformly distributed over

the region

𝐷 = {(𝑥, 𝑦) ∈ ℝ2|0 ≤ 𝑦 ≤ 𝑓(𝑥)} . (2.5)

Then 𝑋 has pdf f, i.e. 𝑓𝑋 = 𝑓.

Proof. First, let us determine the joint pdf of the vector (𝑋, 𝑌). By (1.16), it is

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

441

𝑓(𝑋,𝑌)(𝑥, 𝑦) =
1

𝑎𝑟𝑒𝑎(𝐷)
, for (𝑥, 𝑦) ∈ 𝐷

and 0 everywhere else. But, since 𝑓 is a pdf, that area is∫ 𝑓(𝑥)𝑑𝑥 = 1
ℝ

.

So, the joint pdf of (𝑋, 𝑌) is

𝑓(𝑋,𝑌)(𝑥, 𝑦) = {
1, (𝑥, 𝑦) ∈ 𝐷

0, (𝑥, 𝑦) ∉ 𝐷.

Then, by (1.17), the (marginal) pdf of its first component is

𝑓𝑋(𝑥) = ∫ 𝑓(𝑋,𝑌)(𝑥, 𝑦)𝑑𝑦 = ∫ 𝑑𝑦 = ∫ 𝑑𝑦 = 𝑓(𝑥).
𝑓(𝑥)

0𝐷ℝ
 (2.6)

Thus, 𝑋 indeed has the function 𝑓 as its pdf. □

To generate a variable with given pdf 𝑓, we generate points (𝑋, 𝑌) that are Uniformly

distributed in 𝐷.

Algorithm 2.

1. Find numbers 𝑎, 𝑏 ∈ ℝ, 𝑐 ∈ ℝ+ such that 𝑓(𝑥) ∈ [0, 𝑐] for 𝑥 ∈ [𝑎, 𝑏] (this is

always possible, since 𝐷 is a bounded in ℝ2, having an area of 1. The rectangle
[𝑎, 𝑏] × [0, 𝑐] is called a bounding box.

2. Generate 𝑈, 𝑉 ∈ 𝒰(0,1).

3. Let 𝑋 = 𝑎 + (𝑏 − 𝑎)𝑈 and 𝑌 = 𝑐𝑉. Then 𝑋 ∈ 𝒰(a, b), 𝑌 ∈ 𝒰(0, c) and

(𝑋, 𝑌) ∈ 𝒰([a, b] × [0, c]).

4. If 𝑌 > 𝑓(𝑋), reject the point and return to step 2. If 𝑌 ≤ 𝑓(𝑋), then 𝑋 has the

desired pdf, 𝑓.

The idea of the rejection method is displayed graphically in Figure 1.

Figure 1. Rejection Method

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

442

2.3. Special Methods

These methods use specific properties of certain distributions. They are a good alternative

of simulation, when the more general methods presented so far, are too complicated to

implement.

There is a large number of such methods, both for discrete (see e.g. [4]) and continuous

random variables. We only present a few.

Generation of a Poisson random variable, 𝑃(𝜆), 𝜆 > 0, whose pdf is given by (1.7).

We use the fact that such a variable counts the number of “rare” events that occur during

one unit of time and the fact that the time elapsed between any two such events has

Exponential distribution, which can be generated by (2.4), using the inverse transform

method. So, each such time is generated by 𝑇𝑖 = −
1

𝜆
ln (𝑈𝑖) , for 𝑈𝑖 ∈ 𝒰(0,1) and then

we count the number of events that occurred in one unit of time:

𝑋 = max{𝑛 | 𝑇1 + ⋯ + 𝑇𝑛 ≤ 1} , i.e. 𝑋 = max{𝑛 | 𝑈1 ∙ … ∙ 𝑈𝑛 ≥ 𝑒−𝜆}. (2.7)

Algorithm 3.

1. Generate 𝑈1, 𝑈2, … ∈ 𝒰(0,1)

2. Let 𝑋 = max{𝑛 | 𝑈1 ∙ 𝑈2 ∙ … ∙ 𝑈𝑛 ≥ 𝑒−𝜆}.

Generation of a Normal random variable, 𝑁(𝜇, 𝜎), 𝜇 ∈ ℝ, 𝜎 > 0, whose pdf is given

by (1.10). We present an algorithm for generating Normal Variables that uses two-

dimensional vectors, but omit the details, as they are too technical.

Box-Muller transform

Algorithm 4.

1. Generate 𝑈, 𝑉 ∈ 𝒰(0,1).

2. Let

{
𝑍1 = √−2ln (𝑈) cos(2𝜋𝑉) ,

𝑍2 = √−2ln (𝑈) sin(2𝜋𝑉).

Then 𝑍1, 𝑍2 are independent 𝑁(0,1) random variables.

3. Let 𝑋 = 𝜎𝑍 + 𝜇 (for either 𝑍 from above). Then 𝑋 ∈ 𝑁(𝜇, 𝜎).

2.4. Accuracy of a Monte Carlo Study

Now, using the methods of simulation presented so far, we perform a Monte Carlo study,

meaning that we put the chosen algorithm in a loop and simulate a “long run”, i.e.

generate a number of such variables, 𝑋1, … , 𝑋𝑁.

Recall from Statistics that when a parameter is approximated by an estimator (a function

of sample variables) 𝜃̅, a desired quality of that estimator is to be unbiased, i.e. that

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

443

𝐸(𝜃̅) = 𝜃, (2.8)

so that, in the long run, we know its values will stabilize at the right point. We also want

that its variance 𝑉(𝜃̅) be small, approaching 0, as the simple size 𝑁 → ∞.

Estimating probabilities, means and variances

We estimate probabilities by long run relative frequencies. For a random variable 𝑋, we

generate variables 𝑋1, … , 𝑋𝑁 with the same distribution and approximate 𝑝 = 𝑃(𝑋 ∈ 𝐴)

by

𝑝̅ =
number of 𝑋1 ,…, 𝑋𝑁 ∈ 𝐴

𝑁
 . (2.9)

The mean value 𝐸(𝑋) = 𝜇, the variance 𝑉(𝑋) = 𝜎2 and the standard deviation 𝜎 =

√𝑉(𝑋) of a random variable 𝑋 estimated by

𝑋̅ =
𝑋1 + ⋯ + 𝑋𝑁

𝑁

𝑠2 =
1

𝑁−1
∑ (𝑋𝑖 − 𝑋̅)2, 𝑠 = √𝑠2𝑁

𝑖=1 , (2.10)

respectively. Since the simulations are independent, the number at the numerator in (2.9)

has Binomial 𝐵(𝑁, 𝑝) distribution and, hence, expected value 𝑁𝑝 and variance 𝑁𝑝(1 −
𝑝). Then, we have

𝐸(𝑝̅) =
1

𝑁
𝑁𝑝 = 𝑝,

 𝑉(𝑝̅) =
1

𝑁2 𝑁𝑝(1 − 𝑝) =
𝑝(1−𝑝)

𝑁
 (2.11)

Thus, 𝑝̅ is an unbiased estimator for 𝑝 and its standard deviation 𝜎(𝑝̅) = √
𝑝(1−𝑝)

𝑁

decreases with 𝑁 at the rate of 1/√𝑁 .

The same is true for the estimators in (2.10), but we omit the details.

Accuracy of a Monte Carlo study

When we conduct a Monte Carlo study, the question arises about its size. What would be

a suitable size in order to get a certain accuracy? Given a tolerable error 𝜀 > 0 and a

significance level (probability of error) 𝛼 ∈ (0,1), we want to determine the size 𝑁 so that

 𝑃(|𝑝̅ − 𝑝| > 𝜀) ≤ 𝛼. (2.12)

By (1.15), for moderate values of 𝑝, we have that
𝑁𝑝̅−𝐸(𝑁𝑝̅)

√𝑉(𝑁𝑝̅)
=

𝑝̅−𝑝

√
𝑝(1−𝑝)

𝑁

≈ 𝑁(0,1). Then

𝑃(|𝑝̅ − 𝑝| > 𝜀) = 𝑃 (
 |𝑝̅−𝑝|

√
𝑝(1−𝑝)

𝑁

>
𝜀

√
𝑝(1−𝑝)

𝑁

) = 2Φ (−
𝜀√𝑁

√𝑝(1−𝑝)
),

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

444

where Φ is Laplace’s function (the cdf of a 𝑁(0,1) variable) described in (1.11).

Still, this contains the unknown value 𝑝. We can manage that using the fact that for any

𝑝 ∈ (0,1), 𝑝(1 − 𝑝) ≤
1

4
 and, thus, Φ (−

𝜀√𝑁

√𝑝(1−𝑝)
) ≤ Φ(−2𝜀√𝑁) . Then to ensure (2.12),

we take Φ(−2𝜀√𝑁) ≤ 𝛼/2, i.e.

 𝑁 ≥
1

4
(

 𝑧𝛼/2

𝜀
)

2
, (2.13)

where 𝑧𝛼/2 is the quantile (inverse of the cdf Φ) of order 𝛼/2 for the 𝑁(0,1) distribution.

3. APPLICATIONS

Let us start by implementing in Matlab some of the examples discussed earlier.

Example 3.1. A Poisson variable 𝛲(𝜆), 𝜆 > 0, using Algorithm 3.

The implementation of Algorithm 3, is given below

lambda = input (’lambda (> 0) = ’); % the parameter

err = input (’error = ’); % maximum error

alpha = input (’alpha (level of significance) = ’);

N = ceil (0.25*(norminv (alpha/2,0,1)/err) ^2); % MC size

for j = 1 : N

 U = rand; % generated U(0,1) variable

 X(j) = 0; % initial value

 while U >= exp (- lambda)

 U = U * rand; % go further to n + 1 (i.e. X + 1)

 X(j) = X(j) + 1; % the Poisson variable

 end

end

clf % Compare it to the Poisson distribution, graphically.

k = 0 : 25; % values for the Poisson distr.

p_k = poisspdf (k, lambda); % probabilities of a Poiss distr.

UX = unique (x); % the values of X listed ONLY ONCE

n_X = hist (X,length(UX)); % the freq. of each value in UX

plot(UX,n_X/N,’’,k,p_k, ’ro’,’Markersize’,7,‘LineWidth’,2)
legend (’simulation’, ’Poisson distr’,0)

A graphical comparison of the pdf’s is shown in Figure 2., for 𝜆 = 5, 𝜀 = 1𝑒 − 3 and 𝛼 =
0.05.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

445

Figure 2. Poisson distribution

Example 3.2. An Exponential variable 𝐸𝑥𝑝(𝜆), 𝜆 > 0, using the inverse transform

method.

An implementation of the algorithm in Example 2.3 is given below.

lambda = input(’lambda (> 0) = ’); % the parameter

err = input (’error (< lambda) = ’);% maximum error

alpha = input (’alpha (level of significance) = ’);

N = ceil(0.25*(norminv(alpha/2,0,1)/err)^2); % MC size

for j = 1 : N

 X(j) = -1/lambda*log(rand); % the Exp variables

end

clf

% Compare it to the Exp(1/lambda) distr. (from Matlab), graphically.

x = -0.1 : 0.01 : 1/lambda* log(lambda/err);

cdfx = expcdf (x, 1/lambda); % the cdf of an Exp distr.

for i = 1: length(x)

 mycdf(i) = mean(X < x(i)); % cdf of the simulation

end

plot (x,cdfx, x, mycdf, ’r: ’, ’LineWidth’, 2)

legend(’cdf of Exp distr’, ’cdf of simulation’,0)

A graphical comparison of the cdf’s is shown in Figure 3., for 𝜆 = 4, 𝜀 = 1𝑒 − 3 and

𝛼 = 0.05.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

446

Figure 3. Exponential distribution, inverse transform method

Example 3.3. Aplication: Forecasting for new software release

An IT company is testing a new software to be released. Every day, software engineers

find a random number of errors and correct them. On each day t, the number of errors

found, 𝑋𝑡, has a Poisson (𝜆𝑡) distribution, where the parameter 𝜆𝑡 is the lowest number

of errors found during the previous 𝑘 days,

𝜆𝑡 = min {𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑘}.

If some errors are still undetected after 𝑡𝑚𝑎𝑥 days (i.e. if not all errors are found in

𝑡𝑚𝑎𝑥 days), the software is withdrawn and goes back to development. Generate a Monte

Carlo study to estimate

a) the time it will take to find all errors;

b) the total number of errors found in this new release;

c) the probability that the software will be sent back to development.

This problem does not have a simple analytic solution, therefore we use Monte Carlo

methods to solve it. Below is the algorithm that gives the desired estimates.

% Forecasting errors in new software release.

err = input (’error = ’); % maximum error

alpha = input(’alpha (level of significance) = ’); % level of sign.

N = ceil(0.25*(norminv(alpha/2,0,1)/err)^2); % MC size

fprintf(’Nr. of simulations N = %d \n’, N)

k = input(’number of previous days considered = ’);

inlastk = input(’numbers of errors in the last k days ...

 (vector of length k) = ’); % initial. nr of errors

tmax = input (’max time (in days) = ’);

% Ttotal is the time it takes to find all the errors (in days)

% Ntotalerr is the total number of errors that are detected

for j = 1 : N;

% T is time from now (in days), X is nr. of errors on day T

% nrerr is the number of errors detected so far

T = 0;

X = inlastk (k);

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

447

nrerr = sum(inlastk);

lastk = inlastk; % number of errors in the last k days

i=0;

while X>0; % while loop until no errors are found

 lambda = min(last); % par. for var X, Poisson

% Simulate the nr of errors on day T, Poisson (lambda) U = rand; %

generated U(0,1) variable

X = 0; % initial value

while U >= exp(- lambda);

 U = U * rand;

 X = X +1; % the Poisson variable

end;

T = T +1; % next day

nrerr = nrerr + X; % new nr. of errors

last = [last(2:k), X]; % new nrs of errors last k

end;

% the while loop ends when X = 0 on day T, that means that all errors

were found on previous day, T – 1

Ttotal (j) = T – 1; % the day all errors were found

 Ntotalerr(j) = nrerr;

end

disp([mean(Ttotal), mean (Ntotalerr), mean (Ttotal > tmax)])

Several runs of this algorithm for 𝜀 = 5𝑒 − 3, 𝛼 = 0.01, 𝑘 = 4, [𝑋𝑡−1, 𝑋𝑡−2, 𝑋𝑡−3,
𝑋𝑡−4] = [10, 5, 7, 6] and 𝑡𝑚𝑎𝑥 = 10, give the time to find all errors approximately 7

days, the total number of errors around 53 and the probability that the software will be

sent back to development about 0.18.

REFERENCES

[1] C. Andrieu, A. Doucet, R. Holenstein, Particle Markov chain Monte Carlo methods, J.

Royal. Statist. Soc. B. Vol. 72(3), 2010, 269-342.

[2] M. Baron, Probability and Statistics for Computer Scientists, 2nd Edition, CRC Press,

Taylor & Francis, Boca Raton, FL, USA, 214.

[3] S. Micula, Probability and Statistics for Computational Sciences, Cluj University Press,

2009.

[4] S. Micula, Statistical Computer Simulations and Monte Carlo Methods, J. of Information

Systems and Operations Management, Vol. 9(2), 2015, 384-394.

[5] J.S. Milton, J. C. Arnold, Instruction to Probability and Statistics: Principles and

Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New

York, 1995.

[6] http://www.mathworks.com/help/matlab/,2015.

http://www.mathworks.com/help/matlab/,2015

